Connect to SQL Server without username and password using SQLAlchemy [duplicate]

Active3 hr before
Viewed126 times

5 Answers


Note that you need to provide a SQL user password in order to securely connect to a CockroachCloud cluster, The connection string should have a placeholder for the password (<ENTER-PASSWORD>)

Example_snippet/controller/utility/_using.js/ $ cockroach start-single-node . . .
$ cockroach start - single - node--advertise - addr 'localhost'--insecure
load more v

You can easily adapt it to any database supported by SQLAlchemy, like:,Later, for your production application, you might want to use a database server like PostgreSQL,,Here we'll see an example using SQLAlchemy

Example_snippet/controller/utility/_using.js/ . └── sql_app ├── __init__. . .
load more v

More notes on connecting to SQL Server at Microsoft SQL Server,,More notes on connecting to SQLite at SQLite

Example_snippet/controller/utility/_using.js/ from sqlalchemy import create_. . .
from sqlalchemy
import create_engine
engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
load more v

Example_snippet/controller/utility/_server.js/ import urllib params = urllib.. . .
import urllib
params = urllib.parse.quote_plus("DRIVER={SQL Server Native Client 10.0};SERVER=dagger;DATABASE=test;UID=user;PWD=password")

engine = create_engine("mssql+pyodbc:///?odbc_connect=%s" % params)

Connect and share knowledge within a single location that is structured and easy to search,,I am able to connect to my database using pyodbc alone, and run test queries

Example_snippet/controller/utility/_server.js/ from sqlalchemy import create_. . .
from sqlalchemy
import create_engine
import urllib
conn_str = (
   r 'Driver=ODBC Driver 17 for SQL Server;'
   r 'Server=(local)\SQLEXPRESS;'
   r 'Database=myDb;'
   r 'Trusted_Connection=yes;'
quoted_conn_str = urllib.parse.quote_plus(conn_str)
engine = create_engine(f 'mssql+pyodbc:///?odbc_connect={quoted_conn_str}')
cnxn = engine.connect()
rows = cnxn.execute("SELECT name FROM sys.tables").fetchall()